BRAIN

Bild2 Neu

Produktionssysteme sind komplexe soziotechnische Systeme. Zur Beschreibung dieser Systeme werden sowohl deterministische als auch kybernetische Modelle herangezogen, die in vielfältiger Form genutzt werden, um z. B. im Betrieb Zustandsüberwachung, Qualitätssicherung und gesteuertes System-verhalten zu realisieren. Die mit diesen Modellen verfolgten Ziele variieren und verfolgen u.a. die Identifikation von Wirkzusammenhängen und Gesetzmäßigkeiten bzw. von Phänomenen, Strukturen und Mustern. In der virtuellen Produktion werden bspw. Simulationsmodelle herangezogen, um das Verhalten von Produktionsprozessen oder Materialien vorherzusagen. Im Fokus des BRAIN Projektes liegen datenorientierte Lernverfahren (Supervised und Unsupervised Learning und Reiz-reaktionsorientierte Lernverfahren (Reinforcement Learning). Das Ziel dieses Vorhabens ist es, eine systematische Aufbereitung von Verfahren des maschinellen Lernens im Produktionskontext hinsichtlich ihrer Nutzungspotenziale anzustoßen. Dazu werden die Verfahren sowohl theoretisch aufbereitet als auch praktisch in verschiedenen Use Cases angewendet und evaluiert. Darüber hinaus dient das Vorhaben dem Ausbau eines interdisziplinären RWTH-internen Forscherteams im Kontext KI-gestützter Datenanalysen in der Produktionstechnik.

Brain Figure Angedacht
Neuronales Netz
Keyfacts
Förderinstitution
DFG (Exzellenzcluster der RWTH)
Projektpartner
IBF - Institut für Bildsame Formgebung der RWTH Aachen University
IKV - Institut für Kunststoffverarbeitung der RWTH Aachen University
KBSG - Knowledge Based System Groups der RWTHAachen University
Opel AG
Audi AG
Laufzeit
01.08.2016 – 30.09.2017
Raum
D 2.04
Telefon
+49 241 80 91146

E-Mail
332519E30B96E7F563D191778F0824Ae